Superoxide and the production of oxidative DNA damage.

نویسندگان

  • K Keyer
  • A S Gort
  • J A Imlay
چکیده

The conventional model of oxidative DNA damage posits a role for superoxide (O2-) as a reductant for iron, which subsequently generates a hydroxyl radical by transferring the electron to H2O2. The hydroxyl radical then attacks DNA. Indeed, mutants of Escherichia coli that lack superoxide dismutase (SOD) were 10-fold more vulnerable to DNA oxidation by H2O2 than were wild-type cells. Even the pace of DNA damage by endogenous oxidants was great enough that the SOD mutants could not tolerate air if enzymes that repair oxidative DNA lesions were inactive. However, DNA oxidation proceeds in SOD-proficient cells without the involvement of O2-, as evidenced by the failure of SOD overproduction or anaerobiosis to suppress damage by H2O2. Furthermore, the mechanism by which excess O2- causes damage was called into question when the hypersensitivity of SOD mutants to DNA damage persisted for at least 20 min after O2- had been dispelled through the imposition of anaerobiosis. That behavior contradicted the standard model, which requires that O2- be present to rereduce cellular iron during the period of exposure to H2O2. Evidently, DNA oxidation is driven by a reductant other than O2-, which leaves the mechanism of damage promotion by O2- unsettled. One possibility is that, through its well-established ability to leach iron from iron-sulfur clusters, O2- increases the amount of free iron that is available to catalyze hydroxyl radical production. Experiments with iron transport mutants confirmed that increases in free-iron concentration have the effect of accelerating DNA oxidation. Thus, O2- may be genotoxic only in doses that exceed those found in SOD-proficient cells, and in those limited circumstances it may promote DNA damage by increasing the amount of DNA-bound iron.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protective effect of pomegranate seed oil against H2O2 -induced oxidative stress in cardiomyocytes

Objective: It has been well documented that oxidative stress is involved in the pathogenesis of cardiac diseases. Previous studies have shown that pomegranate seed oil (PSO) has antioxidant properties. This study was designed to investigate probable protective effects of PSO against hydrogen peroxide (H2O2)-induced damage in H9c2 cardiomyocytes.Materials and Methods: The cells were pretreated 2...

متن کامل

Evaluation of Oxidative Stress and DNA Damage Indicators Following A Long Period of Resistance Training in Sedentary Older Men

Background and Aim: Excessive production of free radicals and the accumulation of oxidative damages play an important role in accelerating the aging process. However, one of the ways to fight against aging and related diseases is through physical activity. The aim of the present study was to investigate the effect of 12 weeks of resistance training on oxidative stress indicators (8-iso-prostagl...

متن کامل

Effect of rutin on oxidative DNA damage in PC12 neurons cultured in nutrients deprivation condition

Objective(s): Rutin is a flavonoid with potent antioxidant property, which exhibited cytoprotective effects in several models of neuronal injury. This work aimed to examine whether rutin can protect neurons against oxidative DNA damage caused by serum/glucose deprivation (SGD) as an in vitro model of neurodegeneration and ischemia. Materials and Metho...

متن کامل

P-240: Effect of Oxidative Stress on DNA Fragmentation Index in Sperm of Mature Mice

Background: One of the major factors affecting on male infertility is oxidative stress (OS). Two main sources of ROS production are leukocytes and spermatozoa. The ROS such as tertiary-butyl hydroperoxide (TBHP) may damage and fragmentate to sperm DNA, which can lead to complications in the offspring. In this study, we will investigate the effect of od on DNA fragmentation index (DFI) in sperm ...

متن کامل

NADH oxidase activation is involved in arsenite-induced oxidative DNA damage in human vascular smooth muscle cells.

Arsenic is atherogenic, carcinogenic, and genotoxic. Because atherosclerotic plaque has been considered a benign smooth muscle cell tumor, we have studied the effects of arsenite on DNA integrity of human vascular smooth muscle cells. By using single-cell alkaline electrophoresis, apparent DNA strand breaks were detected in a 4-hour treatment with arsenite at a concentration above 1 micromol/L....

متن کامل

OGG1 DNA Repair Gene Polymorphism As a Biomarker of Oxidative and Genotoxic DNA Damage

Background: Single nucleotide polymorphisms in 8-oxoguanine DNA glycosylase-1 (OGG1) gene modulates DNA repair capacity and functions as one of the first lines of protective mechanisms against 8-hydroxy-2’-deoxyguanosine (8-OHdG) mutagenicity. OGG1-Cys326 gene polymorphism may decrease DNA repair function, causing oxidative stress due to higher oxidative DNA damage. The main purpose of this stu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 177 23  شماره 

صفحات  -

تاریخ انتشار 1995